论文标题
$ \ mathcal {n} = 2 $ $ su(n_c)$ sqcd周围的Quantum seiberg-witten时期
Quantum Seiberg-Witten periods for $\mathcal{N}=2$ $SU(N_c)$ SQCD around the superconformal point
论文作者
论文摘要
我们研究了$ {\ cal n} = 2 $的量子seiberg-ongitten期间,通过将$ {\ cal n} = 2 $ $ $ $ su(n_c)$ sqcc绕超级固定点占据$ {\ cal n} = 2 $ {\ cal n}获得。这些超符号场理论的量子Seiberg字体曲线被证明被分类为schrödinger类型和SQCD类型,这些类型依赖于固定点的风味对称性。我们研究量子周期并计算差分运算符,将量子周期与经典周期与变形参数中的四阶相关联。
We study the quantum Seiberg-Witten periods of ${\cal N}=2$ superconformal field theories which are obtained by taking the scaling limit of ${\cal N}=2$ $SU(N_c)$ SQCD around the superconformal fixed point. The quantum Seiberg-Witten curves of these superconformal field theories are shown to be classified into the Schrödinger type and the SQCD type, which depend on flavor symmetry at the fixed point. We study the quantum periods and compute the differential operators which relate the quantum periods to the classical ones up to the fourth-order in the deformation parameter.