论文标题

以10 MHz的重复速率的YTTERBIUM激光器的有效单周脉冲压缩

Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate

论文作者

Köttig, F., Schade, D., Koehler, J. R., Russell, P. St. J., Tani, F.

论文摘要

在过去的几年中,具有100 W范围的平均功率的超快激光器已成为一项成熟的技术,并在科学和技术中使用了许多应用。这些激光器对少量甚至单周期持续时间的非线性时间压缩通常是必不可少的,但仍然很难实现,尤其是在高重复速率下。在这里,我们报告了一个两阶段的系统,用于从1030 nm ytterbium纤维激光器到单周期持续时间以5 $μ$ J输出脉冲能量为9.6 MHz重复率,从而压缩脉冲。在第一阶段,激光脉冲从340 fs压缩到25 fs,通过光谱宽扩大,在充满Klypton的单角光子晶体纤维(SR-PCF)中,随后用chi镜获得了随后的相补偿。在第二阶段,通过在充满霓虹灯的SR-PCF中,通过孤子效应的自我压缩进一步压缩到单周期的持续时间。我们通过数值后向测得的脉冲来估计纤维输出处的脉冲持续时间约为3.4 fs。最后,我们直接测量脉冲持续时间为3.8 fs(1.25光周期)后,在纤维后的光学元件中引入的色散(使用chir镜)后,总脉冲能量的50%以上是主峰。该系统可以产生峰值> 0.6 GW的压缩脉冲,总传输超过70%。

Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few- or even single-cycle duration is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 $μ$J output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to single-cycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源