论文标题
半达拉宁人:一种新的半监督单图像网络
Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network
论文作者
论文摘要
从单图像中删除雨条的条纹仍然是一项艰巨的任务,因为合成数据集中的雨条的形状和方向与真实图像大不相同。尽管受到监督的深度驱动网络在合成数据集上取得了令人印象深刻的结果,但由于降雨清除能力的概括较弱,它们仍然无法在真实图像上获得令人满意的结果,即,预训练的模型通常无法处理可能导致过度衍生/不足的结果的新形状和方向。在本文中,我们提出了一种称为半杜拉宁人的新的半监督GAN网络,该网络可以使用两个受监督和无监督的过程在统一网络中同时使用合成和真实的雨图。具体而言,得出了一个半监督的雨条学习者,称为SSRML,共享两个过程的相同参数,这使得真实图像贡献了更多的雨条信息。为了提供更好的结果,我们设计了一个配对的歧视器,以将真实对与假对区分开。请注意,我们还贡献了一个新的现实世界图像数据集Real200,以减轻合成和真实图像do-ains之间的差异。公共数据集的广泛结果表明,我们的模型可以获得竞争性能,尤其是在真实图像上。
Removing the rain streaks from single image is still a challenging task, since the shapes and directions of rain streaks in the synthetic datasets are very different from real images. Although supervised deep deraining networks have obtained impressive results on synthetic datasets, they still cannot obtain satisfactory results on real images due to weak generalization of rain removal capacity, i.e., the pre-trained models usually cannot handle new shapes and directions that may lead to over-derained/under-derained results. In this paper, we propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN, which can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes. Specifically, a semi-supervised rain streak learner termed SSRML sharing the same parameters of both processes is derived, which makes the real images contribute more rain streak information. To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs. Note that we also contribute a new real-world rainy image dataset Real200 to alleviate the difference between the synthetic and real image do-mains. Extensive results on public datasets show that our model can obtain competitive performance, especially on real images.