论文标题

双重磷酸化多立场性的动力学空间

The kinetic space of multistationarity in dual phosphorylation

论文作者

Feliu, E., Kaihnsa, N., de Wolff, T., Yürük, O.

论文摘要

分子系统中的多立场性是细胞决策中类似开关的响应的基础。一般而言,确定系统是否以及何时显示多属性是一个困难的问题。在这项工作中,我们完全确定了能够在与细胞信号传导无处不在的基序中实现多立场性的一组动力学参数,即双磷酸化周期。此外,我们表明,多层性和单声道性的区域都是连接的。 我们通过质量表演假设引起的参数化多项式差微分方程(ODE)系统对蛋白质浓度的动力学进行了建模。由于该系统具有由底物和两个酶的总数定义的三个线性第一积分,因此我们研究了ode系统在适当选择总量后至少具有两个正稳态的参数值。我们采用了一套来自(真实的)代数几何形状的技术,特别涉及在正矫正和非负电路多项式的多项式多项式符号的研究。

Multistationarity in molecular systems underlies switch-like responses in cellular decision making. Determining whether and when a system displays multistationarity is in general a difficult problem. In this work we completely determine the set of kinetic parameters that enable multistationarity in a ubiquitous motif involved in cell signaling, namely a dual phosphorylation cycle. In addition we show that the regions of multistationarity and monostationarity are both path connected. We model the dynamics of the concentrations of the proteins over time by means of a parametrized polynomial ordinary differential equation (ODE) system arising from the mass-action assumption. Since this system has three linear first integrals defined by the total amounts of the substrate and the two enzymes, we study for what parameter values the ODE system has at least two positive steady states after suitably choosing the total amounts. We employ a suite of techniques from (real) algebraic geometry, which in particular concern the study of the signs of a multivariate polynomial over the positive orthant and sums of nonnegative circuit polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源