论文标题

cmc图与平面边界$ \ mathbb {h}^{2} \ times \ times \ mathbb {r} $

CMC Graphs With Planar Boundary in $\mathbb{H}^{2}\times \mathbb{R}$

论文作者

Aiolfi, Ari J., Klaser, Patrícia

论文摘要

众所周知,以$ω\ subset \ mathbb {r}^{2} $无限制的凸域和$ h> 0 $,存在图$ g \ subset \ subset \ mathbb {r}^{r}^{3} $ contand curvature curvature curvature curvature curvature curvature $ h $ a $ a $ $ $ $的$ $ y in c = $ y in c = $ $ f =宽度$ 1/h $。在本文中,我们以$ \ mathbb {h}^{2} \ times \ mathbb {r} $在相同方向上以$ h \ in \ left(0,1/2 \ right)$,如果$ h \ in \ yathbb {0,1/2 \ right)$在$ \ mathbb {h} $ pertiand coult(0,1/2 \ right)$中,则包括$ h \。等距Hypercycles $ \ ell(h)$相距,我们表明,如果$ \partialΩ$的地球曲率从下面的$ -1限制为$ -1,则$ h $ -graph $ g $ ive $ g $ yo $ \ $ \ partial g = \ partial g = \ partial partial optial o部分。我们还提供了更多精致的存在结果,涉及$ \partialΩ的曲率,$也可能小于$ -1。

It is known that for $Ω\subset \mathbb{R}^{2}$ an unbounded convex domain and $H>0$, there exists a graph $G\subset \mathbb{R}^{3}$ of constant mean curvature $H$ over $Ω$ with $\partial G=$ $\partial Ω$ if and only if $Ω$ is included in a strip of width $1/H$. In this paper we obtain results in $\mathbb{H}^{2}\times \mathbb{R}$ in the same direction: given $H\in \left( 0,1/2\right) $, if $Ω$ is included in a region of $\mathbb{ H}^{2}\times \left\{ 0\right\} $ bounded by two equidistant hypercycles $\ell(H)$ apart, we show that, if the geodesic curvature of $\partial Ω$ is bounded from below by $-1,$ then there is an $H$-graph $G$ over $Ω$ with $\partial G=\partial Ω$. We also present more refined existence results involving the curvature of $\partialΩ,$ which can also be less than $-1.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源