论文标题

深度学习启用了2D过渡金属二分法中的单原子缺陷的应变图,并具有子量表精度

Deep Learning Enabled Strain Mapping of Single-Atom Defects in 2D Transition Metal Dichalcogenides with Sub-picometer Precision

论文作者

Lee, Chia-Hao, Khan, Abid, Luo, Di, Santos, Tatiane P., Shi, Chuqiao, Janicek, Blanka E., Kang, Sangmin, Zhu, Wenjuan, Sobh, Nahil A., Schleife, André, Clark, Bryan K., Huang, Pinshane Y.

论文摘要

2D材料提供了研究由个别原子缺陷引起的应变场的理想平台,但是与辐射损伤相关的挑战具有如此限制的电子显微镜方法来探测这些原子尺度的应变场。在这里,我们演示了一种在单层型二级过渡金属二进制中探测单原子缺陷的方法。我们利用深度学习来开采大量的像差校正传输电子显微镜图像来定位和分类点缺陷。通过结合数百张名义上相同缺陷的图像,我们生成高信噪比的类大容积,使我们能够测量2D原子坐标,最高为0.3 pm的精度。我们的方法表明,SE空缺引入了WSE $ _ {2-2x} $ te $ _ {2x} $ lattice中的复合物,振荡的应变场,这是连续弹性理论无法解释的。这些结果表明,计算机视觉对梁敏感材料的高精度电子显微镜方法开发的潜在影响。

2D materials offer an ideal platform to study the strain fields induced by individual atomic defects, yet challenges associated with radiation damage have so-far limited electron microscopy methods to probe these atomic-scale strain fields. Here, we demonstrate an approach to probe single-atom defects with sub-picometer precision in a monolayer 2D transition metal dichalcogenide, WSe$_{2-2x}$Te$_{2x}$. We utilize deep learning to mine large datasets of aberration-corrected scanning transmission electron microscopy images to locate and classify point defects. By combining hundreds of images of nominally identical defects, we generate high signal-to-noise class-averages which allow us to measure 2D atomic coordinates with up to 0.3 pm precision. Our methods reveal that Se vacancies introduce complex, oscillating strain fields in the WSe$_{2-2x}$Te$_{2x}$ lattice which cannot be explained by continuum elastic theory. These results indicate the potential impact of computer vision for the development of high-precision electron microscopy methods for beam-sensitive materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源