论文标题

通过相互作用电势的湍流能量光谱

Turbulent energy spectrum via an interaction potential

论文作者

Abramov, Rafail V.

论文摘要

对于通过电势相互作用的大型相同粒子系统,我们发现强大的大规模流速可以通过电势耦合在惯性范围内诱导运动。这种强迫位于傅立叶空间中的特殊束,这些束由成对的颗粒形成。这些捆绑包在Boltzmann,Euler和Navier-Stokes方程式中不存在,因为它们被Bogoliubov出生的绿色Kirkwood-Yvon形式主义摧毁。但是,流动的测量值可以检测到这些束中共有的某些大量效应,例如动能的功率缩放。我们估计两种电势产生的缩放效应:Thomas-Fermi的原子间电位(以及其变化,例如Ziegler-Biersack-Littmark电位)和静电电位。在近乎粘性的惯性范围内,我们的估计产生了Thomas-Fermi和静电电势的动能的五三分之二功率衰减。还可以预测,静电电势将在大惯性尺度下产生动能的逆下能力缩放。标准实验室实验证实了在近粘度尺度下Thomas-Fermi和静电电势的缩放估计值。令人惊讶的是,在大尺度上观察到的地球大气中观察到的动能光谱的表现似乎是由静电电位引起的。鉴于地球大气在静电上不是中性的,因此我们谨慎地提出了一个假设,即惯性范围内的大气动能光谱确实是由通过静电电势耦合的大规模流动驱动的。

For a large system of identical particles interacting by means of a potential, we find that a strong large scale flow velocity can induce motions in the inertial range via the potential coupling. This forcing lies in special bundles in the Fourier space, which are formed by pairs of particles. These bundles are not present in the Boltzmann, Euler and Navier-Stokes equations, because they are destroyed by the Bogoliubov-Born-Green-Kirkwood-Yvon formalism. However, measurements of the flow can detect certain bulk effects shared across these bundles, such as the power scaling of the kinetic energy. We estimate the scaling effects produced by two types of potentials: the Thomas-Fermi interatomic potential (as well as its variations, such as the Ziegler-Biersack-Littmark potential), and the electrostatic potential. In the near-viscous inertial range, our estimates yield the inverse five-thirds power decay of the kinetic energy for both the Thomas-Fermi and electrostatic potentials. The electrostatic potential is also predicted to produce the inverse cubic power scaling of the kinetic energy at large inertial scales. Standard laboratory experiments confirm the scaling estimates for both the Thomas-Fermi and electrostatic potentials at near-viscous scales. Surprisingly, the observed kinetic energy spectrum in the Earth atmosphere at large scales behaves as if induced by the electrostatic potential. Given that the Earth atmosphere is not electrostatically neutral, we cautiously suggest a hypothesis that the atmospheric kinetic energy spectra in the inertial range are indeed driven by the large scale flow via the electrostatic potential coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源