论文标题
周期性XY链中拓扑诱导的亚稳定性
Topologically induced metastability in periodic XY chain
论文作者
论文摘要
在统计物理学中,非平凡的拓扑行为出现在许多不同的情况下,也许最著名的是kosterlitz-二维XY模型中的无与伦比的相位过渡。我们研究具有周期性边界和强烈相互作用的更简单,一个维度的XY链的行为;但是,我们不专注于平衡度量,而是试图理解其动力学。当相互作用强度尺寸(如系统的大小)尺寸(如系统的大小)时,在此一个维情况下的等效性发生在这种情况下,但我们表明,动态的急剧过渡发生在$ \ log \ log n $上时发生的范围 - 当交互作用较弱时,与一定的触角相比,相互作用的互动既不是在互动中,而与一定的互动相比,互动的距离可能是在互动的情况下,而互动却不是在互动的情况下,而互动的距离可能是在互动的范围内,而互动却不是在互动中,而互动却不是在互动的范围内。分化时间尺度。
Non-trivial topological behavior appears in many different contexts in statistical physics, perhaps the most known one being the Kosterlitz-Thouless phase transition in the two dimensional XY model. We study the behavior of a simpler, one dimensional, XY chain with periodic boundary and strong interactions; but rather than concentrating on the equilibrium measure we try to understand its dynamics. The equivalent of the Kosterlitz-Thouless transition in this one dimensional case happens when the interaction strength scales like the size of the system $N$, yet we show that a sharp transition for the dynamics occurs at the scale of $\log N$ -- when the interactions are weaker than a certain threshold topological phases could not be observed over long times, while for interactions that are stronger than that threshold topological phases become metastable, surviving for diverging time scales.