论文标题

周期性XY链中拓扑诱导的亚稳定性

Topologically induced metastability in periodic XY chain

论文作者

Cosco, Clément, Shapira, Assaf

论文摘要

在统计物理学中,非平凡的拓扑行为出现在许多不同的情况下,也许最著名的是kosterlitz-二维XY模型中的无与伦比的相位过渡。我们研究具有周期性边界和强烈相互作用的更简单,一个维度的XY链的行为;但是,我们不专注于平衡度量,而是试图理解其动力学。当相互作用强度尺寸(如系统的大小)尺寸(如系统的大小)时,在此一个维情况下的等效性发生在这种情况下,但我们表明,动态的急剧过渡发生在$ \ log \ log n $上时发生的范围 - 当交互作用较弱时,与一定的触角相比,相互作用的互动既不是在互动中,而与一定的互动相比,互动的距离可能是在互动的情况下,而互动却不是在互动的情况下,而互动的距离可能是在互动的范围内,而互动却不是在互动中,而互动却不是在互动的范围内。分化时间尺度。

Non-trivial topological behavior appears in many different contexts in statistical physics, perhaps the most known one being the Kosterlitz-Thouless phase transition in the two dimensional XY model. We study the behavior of a simpler, one dimensional, XY chain with periodic boundary and strong interactions; but rather than concentrating on the equilibrium measure we try to understand its dynamics. The equivalent of the Kosterlitz-Thouless transition in this one dimensional case happens when the interaction strength scales like the size of the system $N$, yet we show that a sharp transition for the dynamics occurs at the scale of $\log N$ -- when the interactions are weaker than a certain threshold topological phases could not be observed over long times, while for interactions that are stronger than that threshold topological phases become metastable, surviving for diverging time scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源