论文标题
Bekollé-Bonami估计一些伪共元域
Bekollé-Bonami estimates on some pseudoconvex domains
论文作者
论文摘要
我们为Bergman投影的一类伪共元域建立了加权$ l^p $ norm估算。当该域是一个有限的pseudoconvex域时,我们会为加权$ l^p $规范提供一个上限,这是一个有限的pseudoconvex域,一个有限的pseudoconvex域,$ \ mathbb c^2 $,是$ \ mathbb c^n $ c^n $ c^n $ convex type的convex域,$ \ mathbb c^n $,或一个decunite $ nite $ and $ and $ and $ and $ and $ and $ and。上限与Bekollé-Bonami常数有关,并且很锋利。当域是光滑,界限和严格的假子宫vex时,我们还为加权标准获得了下限。
We establish a weighted $L^p$ norm estimate for the Bergman projection for a class of pseudoconvex domains. We obtain an upper bound for the weighted $L^p$ norm when the domain is, for example, a bounded smooth strictly pseudoconvex domain, a pseudoconvex domain of finite type in $\mathbb C^2$, a convex domain of finite type in $\mathbb C^n$, or a decoupled domain of finite type in $\mathbb C^n$. The upper bound is related to the Bekollé-Bonami constant and is sharp. When the domain is smooth, bounded, and strictly pseudoconvex, we also obtain a lower bound for the weighted norm.