论文标题

基于时间感知领域的社会影响预测的方法

An Approach for Time-aware Domain-based Social Influence Prediction

论文作者

Abu-Salih, Bilal, Chan, Kit Yan, Al-Kadi, Omar, Al-Tawil, Marwan, Wongthongtham, Pornpit, Issa, Tomayess, Saadeh, Heba, Al-Hassan, Malak, Bremie, Bushra, Albahlal, Abdulaziz

论文摘要

在线社交网络(OSN)已经建立了虚拟平台,使人们能够在各种环境和领域中表达自己的意见,兴趣和思想,从而使合法用户以及垃圾邮件发送者和其他不信任的用户能够发布和传播其内容。因此,社会信任的概念吸引了信息处理器/数据科学家和信息消费者/商业公司的关注。获取社会大数据价值(SBD)的主要原因之一是使用可以评估OSNS用户的信誉的框架和方法。这些方法应可扩展以适应大规模的社交数据。因此,需要充分理解社会信任,以改善和扩展分析过程并推断SBD的信誉。鉴于裸露的环境设置和与OSN相关的限制较少,该媒体允许合法和真实的用户以及垃圾邮件发送者和其他低信任的用户可以发布和传播其内容。因此,本文提出了一种方法,结合了语义分析和机器学习模块,以衡量和预测用户在不同时间段众多域中的可信度。对执行实验的评估验证了合并的机器学习技术的适用性,以预测高度值得信赖的基于域的用户。

Online Social Networks(OSNs) have established virtual platforms enabling people to express their opinions, interests and thoughts in a variety of contexts and domains, allowing legitimate users as well as spammers and other untrustworthy users to publish and spread their content. Hence, the concept of social trust has attracted the attention of information processors/data scientists and information consumers/business firms. One of the main reasons for acquiring the value of Social Big Data (SBD) is to provide frameworks and methodologies using which the credibility of OSNs users can be evaluated. These approaches should be scalable to accommodate large-scale social data. Hence, there is a need for well comprehending of social trust to improve and expand the analysis process and inferring the credibility of SBD. Given the exposed environment's settings and fewer limitations related to OSNs, the medium allows legitimate and genuine users as well as spammers and other low trustworthy users to publish and spread their content. Hence, this paper presents an approach incorporates semantic analysis and machine learning modules to measure and predict users' trustworthiness in numerous domains in different time periods. The evaluation of the conducted experiment validates the applicability of the incorporated machine learning techniques to predict highly trustworthy domain-based users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源