论文标题
广义晶格可见性
Generalized Lattice Point Visibility
论文作者
论文摘要
It is a well-known result that the proportion of lattice points visible from the origin is given by $\frac{1}{ζ(2)}$, where $ζ(s)=\sum_{n=1}^\infty\frac{1}{n^s}$ denotes the Riemann zeta function. Goins,Harris,Kubik和Mbirika通过说固定的$ b \ in \ Mathbb {n} $,是晶格点$(r,s)\ in \ mathBb { \ Mathbb {q} $的一些$ m \在原点和$(r,s)$之间。在他们的分析中,他们确定对于\ m athbb {n} $中的固定$ b \,$ b $ - 可见的晶格点的比例为$ \ frac {1} {ζ(b+1)} $,它概括了经典晶格可见度设置的结果。在此简短的说明中,我们给出了$ n $维的概念,为$ \ bf {b} $ - 可见性,它恢复了Goins等人提出的概念。 al。在$ 2 $ dimensions中,以及$ n $ Dimensions的经典概念。我们证明,对于固定的$ {\ bf {b}} =(b_1,b_2,\ ldots,b_n)\ in \ mathbb {n}^n $ $ {\ bf {bf}} $的比例,可见点 - $ \ frac {1} {ζ(\ sum_ {i = 1}^nb_i)} $。 此外,我们提出了一个$ \ bf {b} $ - 向量的可见性概念$ \ bf {b} \ in \ mathbb {q} _ {> 0}^n $,我们通过对那些向量强加的条件来表明,一个人可以获得那些人的条件, $ {\ bf {b}} =(\ frac {b_1} {a_1},\ frac {b_2} {a_2} {a_2},\ ldots,\ frac {b_n} $ \ frac {1} {ζ(\ sum_ {i = 1}^nb_i)} $。最后,我们给出了vectors $ \ bf {b} \ in(\ mathbb {q}^{*})^n $的知名度,与以前的概念兼容,该概念恢复了Harris和Omar的结果,以恢复Harris和Omar的$ b \ in \ Mathbb {Q}^{Q}^{并证明$ \ bf {b} $的比例在这种情况下仅取决于$ \ bf {b} $的负条目。
It is a well-known result that the proportion of lattice points visible from the origin is given by $\frac{1}{ζ(2)}$, where $ζ(s)=\sum_{n=1}^\infty\frac{1}{n^s}$ denotes the Riemann zeta function. Goins, Harris, Kubik and Mbirika, generalized the notion of lattice point visibility by saying that for a fixed $b\in\mathbb{N}$, a lattice point $(r,s)\in\mathbb{N}^2$ is $b$-visible from the origin if no other lattice point lies on the graph of a function $f(x)=mx^b$, for some $m\in\mathbb{Q}$, between the origin and $(r,s)$. In their analysis they establish that for a fixed $b\in\mathbb{N}$, the proportion of $b$-visible lattice points is $\frac{1}{ζ(b+1)}$, which generalizes the result in the classical lattice point visibility setting. In this short note we give an $n$-dimensional notion of $\bf{b}$-visibility that recovers the one presented by Goins et. al. in $2$-dimensions, and the classical notion in $n$-dimensions. We prove that for a fixed ${\bf{b}}=(b_1,b_2,\ldots,b_n)\in\mathbb{N}^n$ the proportion of ${\bf{b}}$-visible lattice points is given by $\frac{1}{ζ(\sum_{i=1}^nb_i)}$. Moreover, we propose a $\bf{b}$-visibility notion for vectors $\bf{b}\in \mathbb{Q}_{>0}^n$, and we show that by imposing weak conditions on those vectors one obtains that the density of ${\bf{b}}=(\frac{b_1}{a_1},\frac{b_2}{a_2},\ldots,\frac{b_n}{a_n})\in\mathbb{Q}_{>0}^n$-visible points is $\frac{1}{ζ(\sum_{i=1}^nb_i)}$. Finally, we give a notion of visibility for vectors $\bf{b}\in (\mathbb{Q}^{*})^n$, compatible with the previous notion, that recovers the results of Harris and Omar for $b\in \mathbb{Q}^{*}$ in $2$-dimensions; and show that the proportion of $\bf{b}$-visible points in this case only depends on the negative entries of $\bf{b}$.