论文标题
椭圆表面家族的几何形式表示和泰特猜想的不可约性
Irreducibility of geometric Galois representations and the Tate conjecture for a family of elliptic surfaces
论文作者
论文摘要
使用卡莱加里(Calegari)对fontaine-mazur的猜想的结果,我们研究了纯,常规,等级3的纯正兼容自我兼容系统的不可约性。结果,我们证明了泰特猜想适用于在Q上定义的椭圆表面家族,而几何属大于1。
Using Calegari's result on the Fontaine-Mazur conjecture, we study the irreducibility of pure, regular, rank 3 weakly compatible systems of self-dual l-adic representations. As a consequence, we prove that the Tate conjecture holds for a family of elliptic surfaces defined over Q with geometric genus bigger than 1.