论文标题

椭圆表面家族的几何形式表示和泰特猜想的不可约性

Irreducibility of geometric Galois representations and the Tate conjecture for a family of elliptic surfaces

论文作者

Duan, Lian, Wang, Xiyuan

论文摘要

使用卡莱加里(Calegari)对fontaine-mazur的猜想的结果,我们研究了纯,常规,等级3的纯正兼容自我兼容系统的不可约性。结果,我们证明了泰特猜想适用于在Q上定义的椭圆表面家族,而几何属大于1。

Using Calegari's result on the Fontaine-Mazur conjecture, we study the irreducibility of pure, regular, rank 3 weakly compatible systems of self-dual l-adic representations. As a consequence, we prove that the Tate conjecture holds for a family of elliptic surfaces defined over Q with geometric genus bigger than 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源