论文标题

长尾稀疏轨迹的流动性推断

Mobility Inference on Long-Tailed Sparse Trajectory

论文作者

Shi, Lei

论文摘要

分析城市中的城市轨迹已成为数据挖掘的重要主题。我们如何对包括原始轨迹数据的住宿和旅行的人类流动性进行建模?我们如何从单个轨迹信息中推断出这样的移动性模型?我们如何进一步概括移动性推断以适应随着时间的流逝而稀疏采样的现实轨迹数据? 在本文中,基于住宿/旅行流动性的正式和僵化的定义,我们提出了一种单个轨迹推理算法,该算法利用大规模轨迹数据中使用通用的长尾稀疏模式。该算法保证在召回中有可证明的下限的住宿/旅行推理中的100 \%精度。此外,我们引入了一个编码器学习架构,该体系结构接受多个轨迹作为输入。通过定制的嵌入和学习机制,该体系结构针对移动性推断问题进行了优化。与众所周知的序列学习方法相比,使用三个轨迹数据集的评估验证了所提出的推理算法的性能保证,并证明了我们深度学习模型的优越性。在极稀疏的轨迹上,深度学习模型通过可靠的可伸缩性和通用性,可以从单个轨迹推理算法中提高2 $ \ times $的总体精度。

Analyzing the urban trajectory in cities has become an important topic in data mining. How can we model the human mobility consisting of stay and travel from the raw trajectory data? How can we infer such a mobility model from the single trajectory information? How can we further generalize the mobility inference to accommodate the real-world trajectory data that is sparsely sampled over time? In this paper, based on formal and rigid definitions of the stay/travel mobility, we propose a single trajectory inference algorithm that utilizes a generic long-tailed sparsity pattern in the large-scale trajectory data. The algorithm guarantees a 100\% precision in the stay/travel inference with a provable lower-bound in the recall. Furthermore, we introduce an encoder-decoder learning architecture that admits multiple trajectories as inputs. The architecture is optimized for the mobility inference problem through customized embedding and learning mechanism. Evaluations with three trajectory data sets of 40 million urban users validate the performance guarantees of the proposed inference algorithm and demonstrate the superiority of our deep learning model, in comparison to well-known sequence learning methods. On extremely sparse trajectories, the deep learning model achieves a 2$\times$ overall accuracy improvement from the single trajectory inference algorithm, through proven scalability and generalizability to large-scale versatile training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源