论文标题
设定值映射的统一规律性和隐式多功能的稳定性
Uniform Regularity of Set-Valued Mappings and Stability of Implicit Multifunctions
论文作者
论文摘要
我们提出了一个统一的将军(即不假设映射具有任何特定的结构)对规律性理论的看法,并阐明现有的原始原始定量和双重定量足够和必要条件(包括其层次结构)之间的关系。我们揭示了通常隐藏在证明中的典型规律断言,以及在主张中涉及的假设的作用,尤其是在基础空间上:一般度量,规范,Banach或Asplund。结果,我们为溶液映射到包含物的稳定性特性制定了原始条件和双重条件
We propose a unifying general (i.e. not assuming the mapping to have any particular structure) view on the theory of regularity and clarify the relationships between the existing primal and dual quantitative sufficient and necessary conditions including their hierarchy. We expose the typical sequence of regularity assertions, often hidden in the proofs, and the roles of the assumptions involved in the assertions, in particular, on the underlying space: general metric, normed, Banach or Asplund. As a consequence, we formulate primal and dual conditions for the stability properties of solution mappings to inclusions