论文标题
使用观察到的细菌浓度和在分析框架下建模的过境时间来估计河口中粪便的总体去除率
Using observed bacteria concentration and modeled transit time under an analytical framework to estimate overall removal rate of fecal coliform in an estuary
论文作者
论文摘要
丰富的粪便大肠菌(FC)被广泛用于指示病原体的潜在存在,尽管经过广泛的监测工作,评估和建模FC污染仍然面临着挑战,这是美国排水障碍的第一号原因,这在很大程度上是由于整体移除率估算(K)的不确定性。这项研究提出了一种替代方法,通过结合观察数据,流体动力学模拟和分析解决方案来估计原位K。该方法需要观察到的沿河口通道和数值模拟的运输时间的FC浓度的空间分布,并将K估计从时间问题转化为空间问题,可能会减少调查持续时间,努力和成本。该方法的应用给出了切萨皮克湾的纳萨瓦多克斯克里克的平均估计k = 0.5 d-1。估计K的数值和分析模型与观察结果很好地吻合,证明了该方法的可信度。
Abundance of fecal coliform (FC) is widely used to indicate the potential presence of pathogens, the No.1 cause of water impairments in the U.S. Despite extensive monitoring efforts, assessing and modeling FC pollution still faces challenges, largely owing to the uncertainties in estimation of overall removal rate (K). This study proposes an alternative method to estimate in situ K by combining observational data, hydrodynamic simulation, and analytical solution. The method requires the observed spatial distribution of FC concentration along an estuarine channel and the numerically-simulated transit time, and converts the K estimation from a temporal problem into a spatial problem, potentially reducing survey duration, effort, and cost. Application of the method gave an estimation of K = 0.5 d-1 on average for the Nassawadox Creek in Chesapeake Bay. The numerical and analytical model results with the estimated K agreed well with the observation, demonstrating the credibility of the method.