论文标题
RES2中的堆叠顺序驱动的光学特性和载体动力学
Stacking Order Driven Optical Properties and Carrier Dynamics in ReS2
论文作者
论文摘要
RES2中的两个不同的堆叠顺序被发现没有歧义,并研究了它们对振动,光学特性和载体动力学的影响。使用原子分辨率扫描透射电子显微镜(STEM),两个堆叠顺序被确定为AA堆叠,跨层的位移可忽略不计,AB堆叠沿A轴沿A轴的大约一个单元的单元位移。第一原则计算证实,这两个堆叠顺序对应于两个局部能量最小值。拉曼光谱为I&III模式的一致差异,大约13 cm-1的AA堆叠和20 cm-1用于AB堆叠,这是确定RES2中堆叠订单的简单工具。偏振光发光(PL)表明,与AA堆积相比,AB堆叠具有蓝移的PL峰位置和更宽的峰宽度,表明更强的层间相互作用。使用飞秒泵探针光谱测量的瞬态传播表明,激发态吸收与EXC相关的激发态吸收在AB堆叠中更为各向异性。当探针极化对齐垂直于B轴时,III模式就会消失。我们的发现强调了RES2的堆叠顺序驱动的光学特性和载体动力学,它介导了许多看似矛盾的文献结果,并通过操纵堆叠顺序为具有新功能的电子设备提供了机会。
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principle calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blue-shifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. Our findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.