论文标题
$ a $ - hyphemetric系列和$ p $ - 亚法的精致
$A$-hypergeometric series and a $p$-adic refinement of the Hasse-Witt matrix
论文作者
论文摘要
我们将投影性超曲面的Zeta功能的$ p $ - addic单位根部识别为特征$ p $的有限领域,这是特殊值的特殊值$ p $ adadic系列的特殊值的特征值。该矩阵是$ f(λ^p)^{ - 1} f(λ)$的产品,其中矩阵$ f(λ)$中的条目是$ a $ a $ a-hyphemementric系列,具有积分系数,$ f(λ)$独立于$ p $。
We identify the $p$-adic unit roots of the zeta function of a projective hypersurface over a finite field of characteristic $p$ as the eigenvalues of a product of special values of a certain matrix of $p$-adic series. That matrix is a product $F(Λ^p)^{-1}F(Λ)$, where the entries in the matrix $F(Λ)$ are $A$-hypergeometric series with integral coefficients and $F(Λ)$ is independent of $p$.