论文标题

在椭圆形的calabi-yau四倍上,带有最大$ h^{1,1} $

On the Elliptic Calabi-Yau Fourfold with Maximal $h^{1,1}$

论文作者

Wang, Yi-Nan

论文摘要

在本文中,我们明确地为椭圆形的calabi-yau四倍构建平滑的紧凑型基底,该基部是最大的$ h^{1,1} = 303 \,148 $。它是通过用$(e_8,e_8,e_8)$ collisions炸毁光滑的圆磨“种子”底座来生成的。其上的4D F理论压实模型具有最大的几何量规组,$ e_8^{2 \,561} \ times f_4^{7 \,576} \ times g_2^{20 \,168} \,168} \ times su(times s su(2) $ \ MATHCAL {N} = 1 $超级景观。我们还证明,至少有$ 1100^{15 \,048} \大约7.5 \ times 10^{45 \,766} $此基数三倍的flip和flop阶段。此外,我们发现4D F理论景观中的许多其他基本三倍,具有大$ H^{1,1} $也可以以类似的方式构造。

In this paper, we explicitly construct the smooth compact base threefold for the elliptic Calabi-Yau fourfold with the largest known $h^{1,1}=303\,148$. It is generated by blowing up a smooth toric "seed" base threefold with $(E_8,E_8,E_8)$ collisions. The 4d F-theory compactification model over it has the largest geometric gauge group, $E_8^{2\,561}\times F_4^{7\,576}\times G_2^{20\,168}\times SU(2)^{30\,200}$, and the largest number of axions, $181\,820$, in the known 4d $\mathcal{N}=1$ supergravity landscape. We also prove that there are at least $1100^{15\,048}\approx 7.5\times 10^{45\,766}$ different flip and flop phases of this base threefold. Moreover, we find that many other base threefolds with large $h^{1,1}$ in the 4d F-theory landscape can be constructed in a similar way as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源