论文标题

圆圈上的benjamin-ono方程的多项式结合和非线性平滑

Polynomial Bound and Nonlinear Smoothing for the Benjamin-Ono Equation on the Circle

论文作者

Isom, Bradley, Mantzavinos, Dionyssios, Oh, Seungly, Stefanov, Atanas

论文摘要

For initial data in Sobolev spaces $H^s(\mathbb T)$, $\frac 12 < s \leqslant 1$, the solution to the Cauchy problem for the Benjamin-Ono equation on the circle is shown to grow at most polynomially in time at a rate $(1+t)^{3(s-\frac 12) + ε}$, $0<ε\ll 1$.确定该结果的关键是发现本杰明·荷兰方程的非线性平滑效果,根据该方程,通过某个量规变换满足方程的解决方案,该方程在凯奇问题的良好态度理论中广泛使用,一旦取出了自由解决方案,就变得更加轻松。

For initial data in Sobolev spaces $H^s(\mathbb T)$, $\frac 12 < s \leqslant 1$, the solution to the Cauchy problem for the Benjamin-Ono equation on the circle is shown to grow at most polynomially in time at a rate $(1+t)^{3(s-\frac 12) + ε}$, $0<ε\ll 1$. Key to establishing this result is the discovery of a nonlinear smoothing effect for the Benjamin-Ono equation, according to which the solution to the equation satisfied by a certain gauge transform, which is widely used in the well-posedness theory of the Cauchy problem, becomes smoother once its free solution is removed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源