论文标题

低光图像增强的零参考深曲线估计

Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement

论文作者

Guo, Chunle, Li, Chongyi, Guo, Jichang, Loy, Chen Change, Hou, Junhui, Kwong, Sam, Cong, Runmin

论文摘要

本文提出了一种新颖的方法,“零参考深曲线估计”(零-DCE),该方法将光增强作为特定于图像特异性曲线估计的任务,并具有深层网络。我们的方法训练一个轻巧的深网DCE-NET,以估算像素和高阶曲线,以动态范围调整给定图像。曲线估计是专门设计的,考虑到像素值范围,单调性和不同性。零-DCE在其参考图像上的放松假设方面具有吸引力,即,在训练过程中不需要任何配对或未配对的数据。这是通过一系列精心构造的非参考损失函数来实现的,该功能隐含地衡量增强质量并推动网络学习。我们的方法是有效的,因为可以通过直观且简单的非线性曲线映射来实现图像增强。尽管它很简单,但我们表明它可以很好地推广到各种照明条件下。在各种基准测试上进行了广泛的实验,证明了我们方法在定性和定量上比最先进的方法的优势。此外,讨论了我们零dCE在黑暗中面临检测的潜在好处。代码和模型将在https://github.com/li-chongyi/zero-dce上找到。

The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed. Code and model will be available at https://github.com/Li-Chongyi/Zero-DCE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源