论文标题
魔术Cayley-Sudoku桌
Magic Cayley-Sudoku Tables
论文作者
论文摘要
有限组G的Cayley-Sudoku表是G的Cayley表,其正体被划分为均匀尺寸的矩形块,以使每个组元素在每个块中完全出现一次。 Cayley-sudoku表是pandiagonal魔术,前提是块为正方形,而每个行,列,圆柱,折叠的分组和元素中的“总和”(使用组操作)在每个块中的抗逆性和抗抗异位词都提供了组身份。我们为一个小组提供了足够的条件,可以拥有pandiagonal magic cayley-sudoku桌子并举例说明。
A Cayley-sudoku table of a finite group G is a Cayley table for G, the body of which is partitioned into uniformly sized rectangular blocks in such a way that each group element appears exactly once in each block. A Cayley-sudoku table is pandiagonal magic provided the blocks are square and the "sum" (using the group operation) of elements in every row, column, broken diagonal, and broken antidiagonal in each block gives the group identity. We provide sufficient conditions for a group to have a pandiagonal magic Cayley-sudoku table and give some examples.