论文标题
载体歧管上自动dq-sodule的有限定理
A finiteness theorem for holonomic DQ-modules on Poisson manifolds
论文作者
论文摘要
在复杂的符号歧管上,我们证明了在两种情况下全体DQ模型解决方案的全局段的有限结果:(a)假设在代数情况下存在泊松压实(b)。这扩展了我们先前的结果,其中符号歧管是紧凑的。主要工具是在非适当情况下在真实分析歧管上进行R-Rostructibstibstibles滑轮的有限定理。
On a complex symplectic manifold we prove a finiteness result for the global sections of solutions of holonomic DQ-modules in two cases: (a) by assuming that there exists a Poisson compactification (b) in the algebraic case. This extends our previous results in which the symplectic manifold was compact. The main tool is a finiteness theorem for R-constructible sheaves on a real analytic manifold in a non proper situation.