论文标题

关于Petrenko的偏差和二阶微分方程

On Petrenko's deviations and second order differential equations

论文作者

Heittokangas, J., Zemirni, M. A.

论文摘要

获得$ f'''+a(z)f = 0 $的解决方案的振荡以及$ f'''+a(z)f'+b(z)f = 0 $的溶液增长的新结果,其中$ a $ a $ a $ a $ b $是整个功能。 Petrenko相对于$ \ infty $的$ g $偏差的幅度在结果中播放了一个键rôle,其中$ g $代表系数$ a $ a $ a $ a $ a $ a或$ b $。这些数量由$β^ - (\ infty,g)= \ liminf_ {r \ to \ infty} \ frac {\ log M(r,g)} { m(r,g)} {t(r,g)} $。

New results on the oscillation of solutions of $f''+A(z)f=0$ and on the growth of solutions of $f''+A(z)f'+B(z)f=0$ are obtained, where $A$ and $B$ are entire functions. Petrenko's magnitudes of deviation of $g$ with respect to $\infty$ play a key rôle in the results, where $g$ represents one of the coefficients $A$ or $B$. These quantities are defined by $β^-(\infty,g) = \liminf_{r\to\infty} \frac{\log M(r,g)}{T(r,g)}$ and $β^+(\infty,g) = \limsup_{r\to\infty} \frac{\log M(r,g)}{T(r,g)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源