论文标题
在Banach空间的绝对总和中
Daugavet- and Delta-points in absolute sums of Banach spaces
论文作者
论文摘要
Banach空间的Daugavet点(分别〜$δ$ - 点)是一个常态的一个元素$ x $,单位球中的每个点(resp。〜元素$ x $本身)都位于封闭的单位球元件的凸壳中,几乎在$ x $的距离为2。当且仅当每个标准一个元素都是Daugavet点(分别〜$δ$ - 点)时,Banach空间具有众所周知的Daugavet属性(分别〜直径局部直径2属性)。本文对T. A. Abrahamsen,R。Haller,V。Lima和K. Pirk的文章进行了补充,该文章开始了Banach Space的绝对Sums sumpoints的研究。
A Daugavet-point (resp.~$Δ$-point) of a Banach space is a norm one element $x$ for which every point in the unit ball (resp.~element $x$ itself) is in the closed convex hull of unit ball elements that are almost at distance 2 from $x$. A Banach space has the well-known Daugavet property (resp.~diametral local diameter 2 property) if and only if every norm one element is a Daugavet-point (resp.~$Δ$-point). This paper complements the article "Delta- and Daugavet-points in Banach spaces" by T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk, where the study of the existence of Daugavet- and $Δ$-points in absolute sums of Banach spaces was started.