论文标题
基于攻击的DOS攻击检测使用多个分类器
Attack based DoS attack detection using multiple classifier
论文作者
论文摘要
近年来,造成严重经济损失的最常见互联网攻击之一是拒绝服务(DOS)洪水攻击。作为对策,开发了配备机器学习分类算法的入侵检测系统以检测网络流量的异常情况。这些分类算法取决于所使用的DOS攻击的类型,取决于不同程度的成功。在本文中,我们使用来自真实测试床的SNMP-MIB数据集来探索最突出的DOS攻击以及基于所使用的分类算法检测的机会。结果表明,使用基于SNMP-MIB提供的功能,使用机器学习分类技术可以高精度地检测到当今使用的大多数DOS攻击。我们还得出结论,在我们研究的所有攻击中,慢速攻击的检测率最高,另一方面,TCP-SYN在所有分类技术中的检测率最低,尽管是最常用的DOS攻击之一。
One of the most common internet attacks causing significant economic losses in recent years is the Denial of Service (DoS) flooding attack. As a countermeasure, intrusion detection systems equipped with machine learning classification algorithms were developed to detect anomalies in network traffic. These classification algorithms had varying degrees of success, depending on the type of DoS attack used. In this paper, we use an SNMP-MIB dataset from real testbed to explore the most prominent DoS attacks and the chances of their detection based on the classification algorithm used. The results show that most DOS attacks used nowadays can be detected with high accuracy using machine learning classification techniques based on features provided by SNMP-MIB. We also conclude that of all the attacks we studied, the Slowloris attack had the highest detection rate, on the other hand TCP-SYN had the lowest detection rate throughout all classification techniques, despite being one of the most used DoS attacks.