论文标题

通过趋势效用估计的类似人类的时间序列摘要

Human-like Time Series Summaries via Trend Utility Estimation

论文作者

Jandaghi, Pegah, Pujara, Jay

论文摘要

在许多情况下,人类更喜欢基于文本的定量数据表示,而不是数值,表格或图形表示。文本摘要对复杂数据的吸引力激发了对数据到文本系统的研究。虽然有几种时间序列的数据到文本工具,但很少有人试图模仿人类如何总结时间序列。在本文中,我们提出了一个模型来为时间序列创建类似人类的文本描述。我们的系统在时间序列数据中找到了模式,并根据使用效用估计的人类行为的经验观察来对这些模式进行排名。我们提出的效用估计模型是贝叶斯网络,捕获不同模式之间的相互依赖性。我们描述了该网络的学习步骤,并介绍基准以及它们的每个步骤的性能。我们系统的输出是时间序列的自然语言描述,它试图匹配人类相同数据的摘要。

In many scenarios, humans prefer a text-based representation of quantitative data over numerical, tabular, or graphical representations. The attractiveness of textual summaries for complex data has inspired research on data-to-text systems. While there are several data-to-text tools for time series, few of them try to mimic how humans summarize for time series. In this paper, we propose a model to create human-like text descriptions for time series. Our system finds patterns in time series data and ranks these patterns based on empirical observations of human behavior using utility estimation. Our proposed utility estimation model is a Bayesian network capturing interdependencies between different patterns. We describe the learning steps for this network and introduce baselines along with their performance for each step. The output of our system is a natural language description of time series that attempts to match a human's summary of the same data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源