论文标题

用于抛物线抛物线差异方程的Dirichlet问题的随机步行算法

Random walk algorithm for the Dirichlet problem for parabolic integro-differential equation

论文作者

Deligiannidis, G., Maurer, S., Tretyakov, M. V.

论文摘要

我们考虑由一般lévy过程(SDE)驱动的随机微分方程,具有无限活性,以及​​通过Feynman-kac公式的相关性,抛物线抛物性透明度分化方程(PIDE)的差异问题。我们使用SDE的数值方法近似Pide的解。该方法基于三种成分:(i)我们通过扩散近似小跳跃; (ii)我们使用受限制的跳跃自适应时间步变; (iii)在跳跃之间,我们利用了弱的Euler近似。我们证明了所考虑算法的弱收敛性,并对其误差和计算成本如何取决于跳跃活动水平进行了深入的分析。提出了一些数值实验的结果,包括屏障篮子货币期权的定价。

We consider stochastic differential equations driven by a general Lévy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solution of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump-adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源