论文标题
对统一叶子通用圆圈的作用最小
Minimality of the action on the universal circle of uniform foliations
论文作者
论文摘要
鉴于格罗莫夫双曲叶子在$ 3 $ - manifold上进行了统一的叶子,我们表明基本组对通用圆圈的作用在不同点成对上是最小而及物的。我们还证明了另外两个结果:我们证明,一般统一的re床是$ \ mathbb {r} $ - 覆盖的,我们对$ \ mathbb {r} $的通用圆圈进行了新的描述 - 覆盖了gromov双曲线叶子,该叶子与$ m $ m $ $ m $的JSJ脱落有关。
Given a uniform foliation by Gromov hyperbolic leaves on a $3$-manifold, we show that the action of the fundamental group on the universal circle is minimal and transitive on pairs of different points. We also prove two other results: we prove that general uniform Reebless foliations are $\mathbb{R}$-covered and we give a new description of the universal circle of $\mathbb{R}$-covered foliations with Gromov hyperbolic leaves in terms of the JSJ decomposition of $M$.