论文标题

基于图像的对象重新识别的不确定性感知的多光知识蒸馏

Uncertainty-Aware Multi-Shot Knowledge Distillation for Image-Based Object Re-Identification

论文作者

Jin, Xin, Lan, Cuiling, Zeng, Wenjun, Chen, Zhibo

论文摘要

对象重新识别(RE-ID)旨在在时间或相机视图上识别特定对象,而人重新ID和车辆重新ID作为最广泛研究的应用程序。 Re-ID由于观点,(人)姿势和阻塞的变化而具有挑战性。同一对象的多拍可以涵盖各种观点/姿势,从而提供更全面的信息。在本文中,我们建议利用相同身份的多拍摄,以指导每个单独图像的特征学习。具体而言,我们设计了一个不确定性的多摄像师教师(UMTS)网络。它由一个教师网络(T-NET)组成,该网络从同一对象的多个图像中学习了全面的功能,以及以单个图像为输入的学生网络(S-NET)。特别是,我们考虑了有效地将知识从T-NET传递到S-NET的数据依赖性异质分歧不确定性。据我们所知,我们是第一个以教师学习方式利用对象的多拍的人,可以有效地增强基于单个图像的重新ID。我们验证了方法对流行的车辆重新ID和人员重新ID数据集的有效性。在推论中,仅S-NET极大地胜过基线并实现最先进的性能。

Object re-identification (re-id) aims to identify a specific object across times or camera views, with the person re-id and vehicle re-id as the most widely studied applications. Re-id is challenging because of the variations in viewpoints, (human) poses, and occlusions. Multi-shots of the same object can cover diverse viewpoints/poses and thus provide more comprehensive information. In this paper, we propose exploiting the multi-shots of the same identity to guide the feature learning of each individual image. Specifically, we design an Uncertainty-aware Multi-shot Teacher-Student (UMTS) Network. It consists of a teacher network (T-net) that learns the comprehensive features from multiple images of the same object, and a student network (S-net) that takes a single image as input. In particular, we take into account the data dependent heteroscedastic uncertainty for effectively transferring the knowledge from the T-net to S-net. To the best of our knowledge, we are the first to make use of multi-shots of an object in a teacher-student learning manner for effectively boosting the single image based re-id. We validate the effectiveness of our approach on the popular vehicle re-id and person re-id datasets. In inference, the S-net alone significantly outperforms the baselines and achieves the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源