论文标题

物理学为多孔媒体的运输提供了深入的学习。 Buckley Leverett问题

Physics Informed Deep Learning for Transport in Porous Media. Buckley Leverett Problem

论文作者

Fraces, Cedric G., Papaioannou, Adrien, Tchelepi, Hamdi

论文摘要

我们提出了一种新的基于混合物理学的机器学习方法,用于储层建模。该方法依赖于具有基于物理的正则化的一系列深层对抗性神经网络体系结构。该网络用于模拟遵守一组管理定律(例如质量保护)以及相应的边界和初始条件的物理量(即饱和)的动态行为。由局部差异方程式形成残差方程,并用作训练的一部分。使用自动分化算法计算估计物理量的衍生物。这使该模型可以避免过度拟合,通过减少方差并允许推断超出训练数据的范围,包括不确定性隐含于生成对抗网络的分布输出。该方法用于模拟2期不混溶问题(Buckley Leverett)。从非常有限的数据集中,该模型了解了管理方程的参数,并能够在冲击和稀疏方面提供准确的物理解决方案。我们演示了如何在连续问题的正向模拟的背景下应用此方法。还介绍了这些模型作为反问题的使用,该模型同时了解物理定律并确定关键的不确定性地下参数。提出的方法是一种简单而优雅的方法,可以将物理知识灌输到机器学习算法中。这减轻了机器学习算法的两个最重要的缺点:大型数据集的要求和外推的可靠性。本文提出的原则将来可以以无数的方式概括,并应导致新的算法解决前进和反向物理问题。

We present a new hybrid physics-based machine-learning approach to reservoir modeling. The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization. The network is used to simulate the dynamic behavior of physical quantities (i.e. saturation) subject to a set of governing laws (e.g. mass conservation) and corresponding boundary and initial conditions. A residual equation is formed from the governing partial-differential equation and used as part of the training. Derivatives of the estimated physical quantities are computed using automatic differentiation algorithms. This allows the model to avoid overfitting, by reducing the variance and permits extrapolation beyond the range of the training data including uncertainty implicitely derived from the distribution output of the generative adversarial networks. The approach is used to simulate a 2 phase immiscible transport problem (Buckley Leverett). From a very limited dataset, the model learns the parameters of the governing equation and is able to provide an accurate physical solution, both in terms of shock and rarefaction. We demonstrate how this method can be applied in the context of a forward simulation for continuous problems. The use of these models for the inverse problem is also presented, where the model simultaneously learns the physical laws and determines key uncertainty subsurface parameters. The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms. This alleviates the two most significant shortcomings of machine-learning algorithms: the requirement for large datasets and the reliability of extrapolation. The principles presented in this paper can be generalized in innumerable ways in the future and should lead to a new class of algorithms to solve both forward and inverse physical problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源