论文标题

与旋转轨道偶联的立方系统中的铁电波动介导的各向异性超导性

Anisotropic superconductivity mediated by ferroelectric fluctuations in cubic systems with spin-orbit coupling

论文作者

Gastiasoro, Maria N., Trevisan, Thaís V., Fernandes, Rafael M.

论文摘要

通过实验性观察,由于采用了推定的铁电量子临界点(FE-QCP),因此增强了大量掺杂的Srtio $ _ {3} $的超导性,我们研究了立方体系统的配对不稳定性,在该立方体中,电子在该立方体中交换了低Energy铁电极波动。我们考虑在具有自旋轨道偶联的存在下出现的电子与玻色子铁电场之间的直接耦合,而不是与铁电性相关的晶格失真偶联。在弱耦合方面工作,我们发现配对相互作用由软横向光学(TO)模式主导,从而在接近Fe-QCP时导致$ t_ {c} $增强。在关注偶数状态下,我们发现,尽管$ S $波的州总是赢得胜利,但具有较高库珀对角动量的州随着到模式的柔和而成为近距离竞争者。我们表明,Fe波动的立方各向异性将$ S $ - 波和$ G $ - 波的状态混合在一起,从而产生了GAP功能的特征性各向异性。差距各向异性在接近Fe-QCP时进行非单调性的行为:降低到模式频率后,差距各向异性首先更改符号,然后增加幅度。我们讨论了结果的可能应用到srtio $ _ {3} $的超导状态。

Motivated by the experimental observation that superconductivity in bulk doped SrTiO$_{3}$ is enhanced as a putative ferroelectric quantum critical point (FE-QCP) is approached, we study the pairing instability of a cubic system in which electrons exchange low-energy ferroelectric fluctuations. Instead of the gradient coupling to the lattice distortion associated with ferroelectricity, we consider a direct coupling between the electrons and the bosonic ferroelectric field that appears in the presence of spin-orbit coupling. Working in the weak-coupling regime, we find that the pairing interaction is dominated by the soft transverse optical (TO) mode, resulting in a $T_{c}$ enhancement upon approaching the FE-QCP. Focusing on even-parity states, we find that although the $s$-wave state always wins, states with higher Cooper-pair angular momentum become close competitors as the TO mode softens. We show that the cubic anisotropy of the FE fluctuations mixes the $s$-wave and $g$-wave states, resulting in a characteristic anisotropy of the gap function. The gap anisotropy behaves non-monotonically as the FE-QCP is approached: upon decreasing the TO mode frequency, the gap anisotropy first changes sign and then increases in magnitude. We discuss the possible applications of our results to the superconducting state of SrTiO$_{3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源