论文标题
外部和内波函数:de Broglie的双分解理论?
External and internal wave functions: de Broglie's double-solution theory?
论文作者
论文摘要
我们为与路易斯·德布罗格利(Louis de Broglie)的双重分解理论的规范相对应的量子力学提出了解释性框架。原理是将量子系统的演变分解为两个波函数:与其质量中心的演变相对应的外波函数,以及与其内部变量在质量中心系统中的进化相对应的内部波函数。数学分解仅在某些情况下才有可能,因为有许多相互作用将这两个部分连接起来。此外,这两个波函数将具有不同的含义和解释。外波函数“飞行员”量子系统的质量中心:它对应于Broglie Pilot波。当planck常数趋于零时,它是由于模块平方的收敛性以及外波函数的相位汇聚到密度和验证汉密尔顿 - 雅各比统计方程的经典作用而导致的。这种解释解释了所有测量结果,即通过干扰,自旋测量(Stern和Gerlach)和非局部性(EPR-B)实验产生的结果。对于内部波函数,可以进行几种解释:试验波之一可以在级联反应中应用于内部波函数。但是,1927年在Solvay国会对Erwin Schr {Ö}提出的解释也是可能的。对于schr {Ö} dinger,颗粒是扩展的,并且电子的(内部)波函数的平方对应于其在空间中电荷的密度对应。我们提出了许多支持这种解释的论点,就像试验浪的解释是现实和确定性的一样。最后,我们将看到这种双重解释是一种可以更好地理解量子力学解释的辩论并回顾重力与量子力学之间的关系的参考框架。
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory. The principle is to decompose the evolution of a quantum system into two wave functions: an external wave function corresponding to the evolution of its center of mass and an internal wave function corresponding to the evolution of its internal variables in the center-of-mass system. Mathematical decomposition is only possible in certain cases because there are many interactions linking these two parts. In addition, these two wave functions will have different meanings and interpretations. The external wave function "pilots" the center of mass of the quantum system: it corresponds to the Broglie pilot wave. When the Planck constant tends to zero, it results mathematically from the convergence of the square of the module and the phase of the external wave function to a density and a classical action verifying the Hamilton-Jacobi statistical equations. This interpretation explains all the measurement results, namely those yielded by interference, spin measurement (Stern and Gerlach) and non-locality (EPR-B) experiments. For the internal wave function, several interpretations are possible : the one of the pilot wave can be applied in cascade to the internal wave function. However, the interpretation proposed by Erwin Schr{ö}dinger at the Solvay Congress in 1927 and restricted to the internal wave function is also possible. For Schr{ö}dinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space. We present many arguments in favour of this interpretation, which like the pilot wave interpretation is realistic and deterministic. Finally, we will see that this double interpretation serves as a frame of reference by which to better understand the debates on the interpretation of quantum mechanics and to review the relationships between gravity and quantum mechanics.