论文标题
针对各种混合算法优化的量子古典云平台
A quantum-classical cloud platform optimized for variational hybrid algorithms
论文作者
论文摘要
为了支持量子计算的近期应用,新的计算范式已经出现了 - 量子计算机(QPU)通过共享云基础架构与经典计算机(CPU)一起起作用。在这项工作中,我们列举了量子古典云平台的建筑要求,并提出了一个基准测试其运行时性能的框架。此外,我们浏览了两个平台级增强功能,参数汇编和主动量子重置,它们专门优化了量子古典体系结构,以支持变异混合算法(VHAS),这是近端量子硬件的最有希望的应用。最后,我们表明,将这两个功能集成到Rigetti量子云服务(QCS)平台中,可以对控制算法运行时的潜伏期进行大量改进。
In order to support near-term applications of quantum computing, a new compute paradigm has emerged--the quantum-classical cloud--in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In this work, we enumerate the architectural requirements of a quantum-classical cloud platform, and present a framework for benchmarking its runtime performance. In addition, we walk through two platform-level enhancements, parametric compilation and active qubit reset, that specifically optimize a quantum-classical architecture to support variational hybrid algorithms (VHAs), the most promising applications of near-term quantum hardware. Finally, we show that integrating these two features into the Rigetti Quantum Cloud Services (QCS) platform results in considerable improvements to the latencies that govern algorithm runtime.