论文标题

Mn掺杂BI $ _2 $ SE $ _3 $拓扑绝缘子的磁性特性:从头算计算

Magnetic properties of Mn-doped Bi$_2$Se$_3$ topological insulators: ab initio calculations

论文作者

Carva, K., Baláž, P., Šebesta, J., Turek, I., Kudrnovský, J., Máca, F., Drchal, V., Chico, J., Sechovský, V., Honolka, J.

论文摘要

磁性IONS掺杂BI $ _2 $ SE $ _3 $代表了一个有趣的问题,因为它可能会破坏维持拓扑绝缘体特征所需的时间逆转对称性。 Bi $ _2 $ SE $ _3 $中的Mn掺杂剂代表这里研究最多的示例之一。但是,关于它们的磁性排序有很多开放问题。在实验文献中,据报道,不同的居里温度或没有铁磁序的MN浓度。这表明磁性排序现象是复杂的,并且高度易受不同的生长参数的影响,该参数已知会影响材料缺陷浓度。迄今为止,理论集中在一个可能的位置上的Mn掺杂剂,而忽视了放松效应以及天然缺陷。我们已经使用了从头算法来计算受磁性含量掺杂剂影响的电子结构的bi $ _2 $ _3 $电子结构,并之间的交换相互作用。我们考虑了两个可能的MN位置,即替代和间质的位置,也是天然缺陷。我们发现MN周围原子的大量松弛,这会影响明显的磁相互作用。令人惊讶的是,非常强的相互作用对应于范德华缝隙分离的Mn原子的特定位置。基于计算的数据,我们进行了自旋动力学模拟,以系统地检查各种缺陷含量的磁性顺序。我们发现在哪些条件下,可以重现的实验测量的居里温度$ {t _ {\ rm {c}}}} $可以重现,并注意到这里的间隙Mn原子在这里似乎很重要。我们的理论预测了$ {t _ {\ rm {c}}} $的变化,而费米级别的变化为通过选择性掺杂打开了系统磁性磁性的方法。

Doping Bi$_2$Se$_3$ by magnetic ions represents an interesting problem since it may break the time reversal symmetry needed to maintain the topological insulator character. Mn dopants in Bi$_2$Se$_3$ represent one of the most studied examples here. However, there is a lot of open questions regarding their magnetic ordering. In the experimental literature different Curie temperatures or no ferromagnetic order at all are reported for comparable Mn concentrations. This suggests that magnetic ordering phenomena are complex and highly susceptible to different growth parameters, which are known to affect material defect concentrations. So far theory focused on Mn dopants in one possible position, and neglected relaxation effects as well as native defects. We have used ab initio methods to calculate the Bi$_2$Se$_3$ electronic structure influenced by magnetic Mn dopants, and exchange interactions between them. We have considered two possible Mn positions, the substitutional and interstitial one, and also native defects. We have found a sizable relaxation of atoms around Mn, which affects significantly magnetic interactions. Surprisingly, very strong interactions correspond to a specific position of Mn atoms separated by van der Waals gap. Based on the calculated data we performed spin dynamics simulations to examine systematically the resulting magnetic order for various defect contents. We have found under which conditions the experimentally measured Curie temperatures ${T_{\rm{C}}}$ can be reproduced, noticing that interstitial Mn atoms appear to be important here. Our theory predicts the change of ${T_{\rm{C}}}$ with a shift of Fermi level, which opens the way to tune the system magnetic properties by selective doping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源