论文标题
使用深度学习来探索当地的物理相似性,以进行热湿度模拟中的全球尺度桥接
Using Deep Learning to Explore Local Physical Similarity for Global-scale Bridging in Thermal-hydraulic Simulation
论文作者
论文摘要
当前的系统热湿度代码在模拟真实植物条件方面的信誉有限,尤其是当几何形状和边界条件被推断到测试设施范围之外时。本文提出了一种数据驱动的方法,具有相似性测量FFSM),以建立技术依据,以通过使用机器学习探索本地模式来克服这些困难。多尺度数据中的基本局部模式由一组物理特征表示,这些物理特征体现了来自感兴趣的物理系统,经验相关性和网格大小的效果的信息。在执行了有限数量的高保真数值模拟和足够数量的快速运行的粗线模拟之后,构建了错误数据库,并将深度学习应用于构建和探索本地物理特征和仿真错误之间的关系。基于混合对流的案例研究旨在证明数据驱动模型在弥合全球尺度差距中的能力。
Current system thermal-hydraulic codes have limited credibility in simulating real plant conditions, especially when the geometry and boundary conditions are extrapolated beyond the range of test facilities. This paper proposes a data-driven approach, Feature Similarity Measurement FFSM), to establish a technical basis to overcome these difficulties by exploring local patterns using machine learning. The underlying local patterns in multiscale data are represented by a set of physical features that embody the information from a physical system of interest, empirical correlations, and the effect of mesh size. After performing a limited number of high-fidelity numerical simulations and a sufficient amount of fast-running coarse-mesh simulations, an error database is built, and deep learning is applied to construct and explore the relationship between the local physical features and simulation errors. Case studies based on mixed convection have been designed for demonstrating the capability of data-driven models in bridging global scale gaps.