论文标题
使用贝叶斯优化的超冷气体制备有序状态
Preparation of ordered states in ultra-cold gases using Bayesian optimization
论文作者
论文摘要
在内部和外部自由度的可控程度上,超冷原子气体都是独特的。这使得可以将它们用于研究复杂的量子多体现象。然而,在许多情况下,尽管不充分和系统瑕疵,但忠实地准备所需的量子状态的先决条件并不总是充分满足。为了通往特定目标状态的道路,我们根据贝叶斯优化探索量子最佳控制框架。贝叶斯优化的概率建模和广泛的探索方面特别适用于数据采集可能很昂贵的量子实验。使用数值模拟将玻色子的超氟莫特绝缘体过渡以及与现有的最佳控制方法相比,贝叶斯优化能够与有限和嘈杂的数据相比,与有限和嘈杂的数据相比,贝叶斯优化能够找到更好的控制解决方案。
Ultra-cold atomic gases are unique in terms of the degree of controllability, both for internal and external degrees of freedom. This makes it possible to use them for the study of complex quantum many-body phenomena. However in many scenarios, the prerequisite condition of faithfully preparing a desired quantum state despite decoherence and system imperfections is not always adequately met. To path the way to a specific target state, we explore quantum optimal control framework based on Bayesian optimization. The probabilistic modeling and broad exploration aspects of Bayesian optimization is particularly suitable for quantum experiments where data acquisition can be expensive. Using numerical simulations for the superfluid to Mott-insulator transition for bosons in a lattice as well for the formation of Rydberg crystals as explicit examples, we demonstrate that Bayesian optimization is capable of finding better control solutions with regards to finite and noisy data compared to existing methods of optimal control.