论文标题
组成运算符进入有限变化的功能空间
Composition operator into the space of function of bounded variation
论文作者
论文摘要
令$ω_1,ω_2\ subset \ mathbb r^n $和$ 1 \ leq p <\ infty $。我们研究同构$ f:ω_1$ to $ω_2$上的最佳条件,该条件保证了$ u \ circ f $属于w^{1,p}中的每个$ u \ in $ u \ u \ u \ in p}(p}(ω_2)$的空间$ bv(ω_1)$。我们表明,足够和必要的条件是在l^{p'}(ω_2)$中的函数$ k(y)\的存在,因此所有borel sets $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $的$ | df |(f^{ - 1}(a))\ leq \ int_a k(y)\,dy $。
Let $Ω_1, Ω_2\subset \mathbb R^n$ and $1\leq p <\infty$. We study the optimal conditions on a homeomorphism $f:Ω_1$ onto $Ω_2$ which guarantee that the composition $u\circ f$ belongs to the space $BV(Ω_1)$ for every $u\in W^{1,p}(Ω_2)$. We show that the sufficient and necessary condition is an existence of a function $K(y)\in L^{p'}(Ω_2)$ such that $|Df|(f^{-1}(A))\leq \int_A K(y)\,dy$ for all Borel sets $A$.