论文标题

数字和整数的力量总和

Figurate numbers and sums of powers of integers

论文作者

Cereceda, José L.

论文摘要

最近,Marko和Litvinov(ML)指出,对于所有积极整数$ n $和$ p $ $F_{n}^{p-\ell}$ is the $n$-th hyper-tetrahedron number of dimension $p-\ell$ and $c_{p,\ell}$ denotes the number of $(p -\ell)$-dimensional facets formed by cutting the $p$-dimensional cube $0 \leq x_1, x_2, \ldots, x_p \ leq n-1 $。在本文中,我们表明,对于每个自然数量$ p $,ML猜想都是正确的。我们的证明依赖于ML猜想的有效性一定意味着$ C_ {p,\ ell} =(p- \ ell)! s(p,p- \ ell)$,其中$ s(p,p,p- \ ell)$是第二类的stirling号码。此外,我们提供了表达功率之和$ \ sum_ {i = 1}^{n} i^p $的许多等效公式,作为数字的线性组合。

Recently, Marko and Litvinov (ML) conjectured that, for all positive integers $n$ and $p$, the $p$-th power of $n$ admits the representation $n^p = \sum_{\ell =0}^{p-1} (-1)^{l} c_{p,\ell} F_{n}^{p-\ell}$, where $F_{n}^{p-\ell}$ is the $n$-th hyper-tetrahedron number of dimension $p-\ell$ and $c_{p,\ell}$ denotes the number of $(p -\ell)$-dimensional facets formed by cutting the $p$-dimensional cube $0 \leq x_1, x_2, \ldots, x_p \leq n-1$. In this paper we show that the ML conjecture is true for every natural number $p$. Our proof relies on the fact that the validity of the ML conjecture necessarily implies that $c_{p,\ell} = (p-\ell)! S(p, p-\ell)$, where $S(p,p-\ell)$ are the Stirling numbers of the second kind. Furthermore, we provide a number of equivalent formulas expressing the sum of powers $\sum_{i=1}^{n} i^p$ as a linear combination of figurate numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源