论文标题

小规模磁场对流的条纹Blandford/Znajek喷气机

Striped Blandford/Znajek jets from advection of small scale magnetic field

论文作者

Mahlmann, J. F., Levinson, A., Aloy, M. A.

论文摘要

黑洞 - 吸积盘系统是从恒星到银河尺度的相对论喷气机的中央引擎。我们通过数字量化了不稳定的向外向外的通量,并通过旋转积聚盘的快速旋转黑洞的地平线进行量化。圆盘支持零净磁通量的小规模,同心的通量管。我们的一般相对论无力的电动力学模拟跟随3D的几百个动力学时间尺度上的黑洞上积聚。对于反向旋转积聚盘的情况,与Blandford/Znajek工艺的固定能量提取相比,平均过程效率最高为$ \ weft \ weft \langleε\ right \ rangle \ rangle \约0.43 $。该过程效率取决于环路的横截面区域,即产品$ l \ times h $,其中$ l $是径向环的厚度,而$ h $ $ h $其垂直尺度的高度。我们确定了有效的电磁能提取与Blandford/Znajek工艺运行的理想条件的准平台设置之间的牢固相关性(例如,最佳的田间线角速度和所谓的Znajek条件的实现)。值得注意的是,能量提取是间歇性运行的(高效率和低效率的交替发作),而不会施加任何嵌入中心物体的大规模磁场。将结果扩展到超大的黑洞,我们估计系统的典型可变性时间尺度是几天到几个月的顺序。此类时间表可能是观察到的TEV排放最长的变异量表,例如在M87中。

Black hole - accretion disc systems are the central engines of relativistic jets from stellar to galactic scales. We numerically quantify the unsteady outgoing Poynting flux through the horizon of a rapidly spinning black hole endowed with a rotating accretion disc. The disc supports small-scale, concentric, flux tubes with zero net magnetic flux. Our General Relativistic force-free electrodynamics simulations follow the accretion onto the black hole over several hundred dynamical timescales in 3D. For the case of counter-rotating accretion discs, the average process efficiency reaches up to $\left\langleε\right\rangle\approx 0.43$, compared to a stationary energy extraction by the Blandford/Znajek process. The process efficiency depends on the cross-sectional area of the loops, i.e. on the product $l\times h$, where $l$ is the radial loop thickness and $h$ its vertical scale height. We identify a strong correlation between efficient electromagnetic energy extraction and the quasi-stationary setting of ideal conditions for the operation of the Blandford/Znajek process (e.g. optimal field line angular velocity and fulfillment of the so-called Znajek condition). Remarkably, the energy extraction operates intermittently (alternating episodes of high and low efficiency) without imposing any large-scale magnetic field embedding the central object. Scaling our results to supermassive black holes, we estimate that the typical variability timescale of the system is of the order of days to months. Such timescales may account for the longest variability scales of TeV emission observed, e.g. in M87.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源