论文标题

脚手架:基于图表的基于图的计算系统

Scaffolds: a graph-based system for computations in Bose-Mesner algebras

论文作者

Martin, William J.

论文摘要

令$ x $为有限的集合,让$ \ mathsf {matsf {mat} _x(\ mathbb {c})$表示矩阵的代数,由$ x $索引的矩阵和列,以及由$ \ \ \ mathbb {c}^x $的复数数字索引的条目,并带有标准的$ \ \ hat \ hat \ hat {对于Digraph $ g =(v(g),e(g))$,函数$ r:[m] \ rightarrow v(g)$,带有$ r_j:= r(j)$,以及从$ g $ to $ g $ to $ g $ to $ g $ \ mathsf {matsf {matsf {mat}} _x _x(\ mathbb {c} c} $ g $ g $ trof the arcs of a函数$ w $ $ \ MATHSF {s}(g,r; w)$作为所有函数的总和$ v(g)$从$ v(g)$到$ x $的$ m $ -fold tensors $ \ wideHat {φ(r_1)} \ otimes \ wideimes \ wideHat \ wideHat {φ(r_m)} $由条目的乘积缩放$ w(e)_ {φ(a),φ(b)} $上的所有arcs $ e =(a,b)$ g $。脚手架可用于计数,除其他外,Digraph同态和关联方案参数(例如广义交叉数字)。它们也出现在链接不变和旋转模型的理论中。 这些图是由Arnold Neumaier在1980年代后期引入的,并已被与关联方案合作的各种作者隐含地使用。我们重新审视了几位作者的结果,从这些图表和某些操纵规则(或“移动”)上改写了他们的证据。我们的目标是以统一的方式收集和呈现Neumaier的原始想法扩展到张量及其使用的各种作者使用。有时,我们在本文中会出现“ Star-Triangle图”一词,称为“脚手架”。 限制从连贯的代数选择边缘权重的情况下,我们探索矢量空间$ \ mathsf {w}(((g,r); \ m mathbb {a})$由所有脚手架所定义的所有支架上跨越的词根$(g,r)$(g,r)$,并建立了与Graph Graph Gragh Gragh Gragh Minors的连接。我们以关于平面支架的猜想结尾,该平面支架在平面二元性与平面图的二元性之间达到了连接。

Let $X$ be a finite set and let $\mathsf{Mat}_X(\mathbb{C})$ denote the algebra of matrices with rows and columns indexed by $X$ and entries from the complex numbers acting on $\mathbb{C}^X$ with standard basis $\{ \hat{x} \mid x\in X\}$. For a digraph $G=(V(G),E(G))$, function $R:[m] \rightarrow V(G)$ with $r_j := R(j)$, and a function $w$ from the arcs of $G$ to $\mathsf{Mat}_X(\mathbb{C})$, we define the "scaffold" $\mathsf{S}(G,R;w)$ as the sum over all functions $φ$ from $V(G)$ to $X$ of the $m$-fold tensors $\widehat{φ(r_1)} \otimes \widehat{φ(r_2)} \otimes \cdots \otimes \widehat{φ(r_m)}$ scaled by the product of the entries $w(e)_{φ(a),φ(b)}$ over all arcs $e=(a,b)$ of $G$. Scaffolds can be used to count, among other things, digraph homomorphisms and association scheme parameters such as generalized intersection numbers. They also arise in the the theory of link invariants and spin models. These diagrams were introduced in the late 1980s by Arnold Neumaier and have been used implicitly by various authors working with association schemes. We revisit results of several authors, rephrasing their proofs in terms of these diagrams and certain rules of manipulation (or "moves") on diagrams. Our goal is to collect and present, in a uniform fashion, Neumaier's original idea extended to tensors and its used by various authors. Sometimes the term "star-triangle diagram" appears for what we, in this paper, call "scaffolds". Restricting to the case where edge weights are chosen from a coherent algebra, we explore the vector space $\mathsf{W}((G,R); \mathbb{A})$ spanned by all scaffolds defined on rooted diagram $(G,R)$ and establish a connection to graph minors. We end with a conjecture about planar scaffolds that draws a connection between association scheme duality and the duality of plane graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源