论文标题
知识图的生成对抗性零摄像
Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs
论文作者
论文摘要
在当前信息系统中,大规模知识图(KGS)被证明变得越来越重要。为了扩大KGS的覆盖范围,先前关于知识图的研究需要为新近添加的关系收集足够的培训实例。在本文中,我们考虑了一种新颖的表述,零射门学习,以释放这种繁琐的策展。对于新添加的关系,我们试图从文本描述中学习他们的语义特征,从而认识到看不见的关系的事实,没有看到任何例子。为此,我们利用生成的对抗网络(GAN)来建立文本和知识图域之间的连接:生成器学会仅使用嘈杂的文本描述来生成合理的关系嵌入。在这种情况下,零射击学习自然会转换为传统的监督分类任务。从经验上讲,我们的方法是模型不合时宜的,可以可能应用于任何版本的kg嵌入,并始终对Nell和Wiki数据集进行性能改进。
Large-scale knowledge graphs (KGs) are shown to become more important in current information systems. To expand the coverage of KGs, previous studies on knowledge graph completion need to collect adequate training instances for newly-added relations. In this paper, we consider a novel formulation, zero-shot learning, to free this cumbersome curation. For newly-added relations, we attempt to learn their semantic features from their text descriptions and hence recognize the facts of unseen relations with no examples being seen. For this purpose, we leverage Generative Adversarial Networks (GANs) to establish the connection between text and knowledge graph domain: The generator learns to generate the reasonable relation embeddings merely with noisy text descriptions. Under this setting, zero-shot learning is naturally converted to a traditional supervised classification task. Empirically, our method is model-agnostic that could be potentially applied to any version of KG embeddings, and consistently yields performance improvements on NELL and Wiki dataset.