论文标题
扭曲的epoiriant $ k $ - 理论的分解
A Decomposition of Twisted Equivariant $K$-Theory
论文作者
论文摘要
对于有限的组,对于$ g $,是z^{2} \ big(g,{\ mathbb s}^{1} {1} \ big)$和$ x $ a $ g $ - $ a $ a $ a $ a $ g的$ g g g g g $ g g $ g g $ g g $ g g $ g g g g g $ g g g $ g g $ g g $ - 作为直接的扭曲epariant $ k $的总和 - $ x $的理论是由$ g $的轨道参数化的,$ g $在不可约$α$ -projective表示$ a $上。这概括了[GómezJ.M。,Uribe B.,Internat中获得的分解。 J. Math。 28(2017),1750016,23页,arxiv:1604.01656],对于epivariant $ k $ - 理论。我们还为二面体组的特定情况$ d_ {2n} $带有$ n \ ge 2 $甚至整数的特定情况探讨了此分解的一些示例。
For $G$ a finite group, a normalized 2-cocycle $α\in Z^{2}\big(G,{\mathbb S}^{1}\big)$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $α$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $α$-projective representations of $A$. This generalizes the decomposition obtained in [Gómez J.M., Uribe B., Internat. J. Math. 28 (2017), 1750016, 23 pages, arXiv:1604.01656] for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\ge 2$ an even integer.