论文标题
当前在一维中的非交互跑步粒子中的当前波动
Current fluctuations in non-interacting run-and-tumble particles in one-dimension
论文作者
论文摘要
我们提出了一个通用框架,以在不相互互动的一维粒子系统中研究磁通量的分布,该系统的颗粒具有台阶初始条件,其固定密度$ρ$的粒子的粒子左侧的左侧。我们主要关注两种情况:(i)当粒子经历扩散动力学(被动情况)和(ii)每个粒子的运行动力学(活性情况)时。与无序系统类似,我们考虑了被动和主动颗粒的退火和淬火初始条件的通量分布。在退火情况下,我们表明,对于任意粒子动力学,通量分布是一种泊松式,平均$μ(t)$,我们根据单个粒子动力学的绿色功能进行了精确计算。对于淬火情况,我们表明,对于运行和滚动的动力学,淬灭的通量分布在很大程度上采用异常的大偏差形式,$ p _ {\ rm QU}(q,q,t)\ sim \ sim \ sim \ exp \ exp \ left [ - ρ\,v_0 \,v_0 \,v_0 \,γ\,γ\,γ\,t^2ψ_ {\ rm rm rtp} \ left(\ frac {q} {ρv_0\,t} \ right)\ right] $,其中$γ$是翻滚的速率,$ v_0 $是两个连续的倒塌的弹道速度。在本文中,我们计算速率函数$ψ_ {\ rm rtp}(q)$,并表明它是非平凡的。我们的方法还可以访问罕见事件的概率,即在时间$ t $时,原点的权利没有粒子。对于扩散和运行的动力学,我们发现这种概率随着时间的推移指数而衰减,$ \ sim \ exp(-c \,\ sqrt {t})$可以准确计算常数$ c $。我们通过使用重要性采样蒙特 - 卡洛方法来验证这些大偏差的结果。
We present a general framework to study the distribution of the flux through the origin up to time $t$, in a non-interacting one-dimensional system of particles with a step initial condition with a fixed density $ρ$ of particles to the left of the origin. We focus principally on two cases: (i) when the particles undergo diffusive dynamics (passive case) and (ii) run-and-tumble dynamics for each particle (active case). In analogy with disordered systems, we consider the flux distribution both for the annealed and the quenched initial conditions, for the passive and active particles. In the annealed case, we show that, for arbitrary particle dynamics, the flux distribution is a Poissonian with a mean $μ(t)$ that we compute exactly in terms of the Green's function of the single particle dynamics. For the quenched case, we show that, for the run-and-tumble dynamics, the quenched flux distribution takes an anomalous large deviation form at large times $P_{\rm qu}(Q,t) \sim \exp\left[-ρ\, v_0\, γ\, t^2 ψ_{\rm RTP}\left(\frac{Q}{ρv_0\,t} \right) \right]$, where $γ$ is the rate of tumbling and $v_0$ is the ballistic speed between two successive tumblings. In this paper, we compute the rate function $ψ_{\rm RTP}(q)$ and show that it is nontrivial. Our method also gives access to the probability of the rare event that, at time $t$, there is no particle to the right of the origin. For diffusive and run-and-tumble dynamics, we find that this probability decays with time as a stretched exponential, $\sim \exp(-c\, \sqrt{t})$ where the constant $c$ can be computed exactly. We verify our results for these large deviations by using an importance sampling Monte-Carlo method.