论文标题
(P,Q) - 具有单数和凹形凸非线性的方程式
(p,q)-Equations with singular and concave convex nonlinearities
论文作者
论文摘要
我们认为由$(p,q)$ - laplacian驱动的非线性dirichlet问题,$ 1 <q <p $。该反应是参数性的,表现出奇异项以及凹形和凸非线性的竞争作用。我们正在寻找正溶液,并证明了分叉型定理,该定理以一种正面解决方案的精确方式描述,随着参数的变化。此外,我们显示了最小阳性解的存在,并将其研究为参数的函数。
We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian with $1<q<p$. The reaction is parametric and exhibits the competing effects of a singular term and of concave and convex nonlinearities. We are looking for positive solutions and prove a bifurcation-type theorem describing in a precise way the set of positive solutions as the parameter varies. Moreover, we show the existence of a minimal positive solution and we study it as a function of the parameter.