论文标题
从2012年到2015年,在低排放状态下,对射频银河M87的监视使用魔术
Monitoring of the radio galaxy M87 during a low emission state from 2012 to 2015 with MAGIC
论文作者
论文摘要
M87是最接近(Z = 0.00436)的最接近的(Z = 0.00436),以非常高的能量发射(VHE,E> 100 GEV)。这项工作的目的是定位VHE伽马射线发射的区域,并描述在低VHE伽马射线状态下观察到的宽带光谱分布(SED)。分析了2012年至2015年间收集的M87的数据,作为魔术监测程序的一部分,并与Fermi-Lat,Chandra,Hst,HST,EVN,VLBA和Liverpool望远镜的多波长数据进行了分析。可以将平均VHE伽马射线频谱从100GEV拟合到10TEV,并具有简单的功率定律,其光子指数为(-2.41 $ \ pm $ 0.07),而300GEV上方的积分通量为$(1.44 \ pm 0.13)\ pm pm 0.13)在2012年至2015年之间的运动中,在所有观察到的波长中,通常在低排放状态下发现M87。 2012-2015 M87广告系列中的VHE伽马射线通量与恒定通量一致,并在2013年的每日时间范围内具有一定的可变性($ \sim3σ$)。低状态Gamma-ray发射可能起源于同一地区,起源于Flare-State发射。鉴于宽带SED,即使后者是首选,也可以很好地再现可用数据的混合式同步器自我康普顿和混合光 - 光子模型。但是,我们注意到,在松性场景中存储在磁场中的能量非常低,表明物质主导的发射区域。
M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100GeV to 10TeV with a simple power law with a photon index of (-2.41 $\pm$ 0.07), while the integral flux above 300GeV is $(1.44 \pm 0.13) \times 10^{-12} cm^{-2} s^{-1}$. During the campaign between 2012 and 2015, M87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M87 campaign is consistent with a constant flux with some hint of variability ($\sim3σ$) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region.