论文标题

$ p $ - adic超几何功能的零,$ p $ - kummer和Pfaff身份的类似物

Zeros of $p$-adic hypergeometric functions, $p$-adic analogues of Kummer's and Pfaff's identities

论文作者

Saikia, Neelam

论文摘要

我们在$ p $ -ADIC设置中对超代系列家族的所有零和非零值进行了分类。 $ p $ - 亚种设置中的超几何系列的这些值导致了$ p $ - 亚种设置中的超小几幅系列的转换,可以将其描述为Kummer's和Pfaff在古典超角度系列中的$ P $ - 亚种类似物。我们还评估了$ p $ - adiC设置以及高斯高几何体系列中高几幅系列的某些求和身份。

We classify all the zeros and non-zero values of a family of hypergeometric series in the $p$-adic setting. These values of hypergeometric series in the $p$-adic setting lead to transformations of hypergeometric series in the $p$-adic setting which can be described as $p$-adic analogues of Kummer's and Pfaff's linear transformations on classical hypergeometric series. We also evaluate certain summation identities for hypergeometric series in the $p$-adic setting as well as Gaussian hypergeometric series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源