论文标题

用于癌症亚型分类的多尺度域 - 逆流多构度CNN具有未注释的组织病理学图像

Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images

论文作者

Hashimoto, Noriaki, Fukushima, Daisuke, Koga, Ryoichi, Takagi, Yusuke, Ko, Kaho, Kohno, Kei, Nakaguro, Masato, Nakamura, Shigeo, Hontani, Hidekata, Takeuchi, Ichiro

论文摘要

我们提出了一种从组织病理学图像中进行癌症亚型分类的新方法,该方法可以自动检测到给定的整个幻灯片图像(WSI)中的肿瘤特异性特征。癌症亚型应通过指代WSI,即整个病理组织幻灯片的大尺寸图像(通常为40,000x40,000像素),该图像由癌症和非癌症部分组成。一个困难是由于与WSIS的注释肿瘤区域相关的高成本。此外,必须通过更改图像的宏伟速度从WSI中提取全局图像和本地图像特征。此外,应稳定地检测到图像特征与医院/标本之间的染色条件的差异。在本文中,我们通过有效结合多个企业,域对抗和多尺度学习框架来开发一种新的基于CNN的癌症亚型分类方法,以克服这些实际困难。当提出的方法被应用于从多家医院收集的196例病例的恶性淋巴瘤亚型分类时,分类性能明显好于标准CNN或其他常规方法,并且与标准病理学家相比的准确性相比。

We propose a new method for cancer subtype classification from histopathological images, which can automatically detect tumor-specific features in a given whole slide image (WSI). The cancer subtype should be classified by referring to a WSI, i.e., a large-sized image (typically 40,000x40,000 pixels) of an entire pathological tissue slide, which consists of cancer and non-cancer portions. One difficulty arises from the high cost associated with annotating tumor regions in WSIs. Furthermore, both global and local image features must be extracted from the WSI by changing the magnifications of the image. In addition, the image features should be stably detected against the differences of staining conditions among the hospitals/specimens. In this paper, we develop a new CNN-based cancer subtype classification method by effectively combining multiple-instance, domain adversarial, and multi-scale learning frameworks in order to overcome these practical difficulties. When the proposed method was applied to malignant lymphoma subtype classifications of 196 cases collected from multiple hospitals, the classification performance was significantly better than the standard CNN or other conventional methods, and the accuracy compared favorably with that of standard pathologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源