论文标题

关于图形属性的有效距离近似

On Efficient Distance Approximation for Graph Properties

论文作者

Fiat, Nimrod, Ron, Dana

论文摘要

Graph属性$ \ MATHCAL {p} $的距离 - 附属算法给出了近似值参数$ε\ in(0,1)$,并查询访问图$ G =(v,e)$的邻接矩阵。需要在$ g $和最接近的图形$ g'=(v,e')$之间输出\ emph {距离}的估计值,该$满足满足$ \ MATHCAL {p} $,其中图之间的距离是其边缘集合之间的对称差异的大小,并由其边缘集合($ | v | v |^2 $都归一化)。在这项工作中,我们介绍了属性覆盖物,作为使用距离及距离的算法的框架,用于“简单”属性来设计距离及值。应用此框架,我们以$ poly(1/ε)$查询复杂度的诱因$ p_3 $ - feRESINES,诱导$ p_4 $ - $ - 弗雷斯和弦乐的距离。对于诱导的$ C_4 $ -FRESINES,我们的算法具有查询复杂性$ exp(poly(1/ε))$。这些复杂性基本上与测试这些特性的相应已知结果相匹配,并为先前已知的结果提供了指数改进。

A distance-approximation algorithm for a graph property $\mathcal{P}$ in the adjacency-matrix model is given an approximation parameter $ε\in (0,1)$ and query access to the adjacency matrix of a graph $G=(V,E)$. It is required to output an estimate of the \emph{distance} between $G$ and the closest graph $G'=(V,E')$ that satisfies $\mathcal{P}$, where the distance between graphs is the size of the symmetric difference between their edge sets, normalized by $|V|^2$. In this work we introduce property covers, as a framework for using distance-approximation algorithms for "simple" properties to design distance-approximation. Applying this framework we present distance-approximation algorithms with $poly(1/ε)$ query complexity for induced $P_3$-freeness, induced $P_4$-freeness, and Chordality. For induced $C_4$-freeness our algorithm has query complexity $exp(poly(1/ε))$. These complexities essentially match the corresponding known results for testing these properties and provide an exponential improvement on previously known results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源