论文标题
CT和MRI扫描的3D超分辨率的中间损失的卷积神经网络
Convolutional Neural Networks with Intermediate Loss for 3D Super-Resolution of CT and MRI Scans
论文作者
论文摘要
如今,医院中常用的CT扫描仪可产生低分辨率的图像,大小高达512像素。图像中的一个像素对应于一毫米的组织。为了准确细分肿瘤并制定治疗计划,医生需要更高分辨率的CT扫描。 MRI中出现同样的问题。在本文中,我们提出了一种3D CT或MRI扫描的单像超分辨率的方法。我们的方法基于深卷积神经网络(CNN),该网络由10个卷积层和一个中间的升级层组成,该层是前6个卷积层之后的。我们的第一个CNN增加了两个轴(宽度和高度)上的分辨率,然后是第二个CNN,该CNN增加了第三轴(深度)上的分辨率。与其他方法不同,我们还计算出在升级层之后的地面高分辨率输出方面的损失,除了计算最后一个卷积层之后的损失。中间损失迫使我们的网络产生更好的输出,更接近地面真实。获得尖锐结果的一种广泛使用的方法是使用固定的标准偏差添加高斯模糊。为了避免过度适合固定标准偏差,我们将高斯平滑施加使用各种标准偏差,与其他方法不同。我们在两个数据库的CT和MRI扫描的2D和3D超分辨率的背景下评估了我们的方法,并使用2X和4X缩放因素将其与基于各种插值方案的文献和基准的相关相关作品进行了比较。经验结果表明,我们的方法比所有其他方法都取得了优越的结果。此外,我们的人类注释研究表明,医生和常规注释者都选择了我们的方法,有利于97.55%的兰西斯插值,用于2倍升级因子,在96.69%的病例中以4倍的升级因素。
CT scanners that are commonly-used in hospitals nowadays produce low-resolution images, up to 512 pixels in size. One pixel in the image corresponds to a one millimeter piece of tissue. In order to accurately segment tumors and make treatment plans, doctors need CT scans of higher resolution. The same problem appears in MRI. In this paper, we propose an approach for the single-image super-resolution of 3D CT or MRI scans. Our method is based on deep convolutional neural networks (CNNs) composed of 10 convolutional layers and an intermediate upscaling layer that is placed after the first 6 convolutional layers. Our first CNN, which increases the resolution on two axes (width and height), is followed by a second CNN, which increases the resolution on the third axis (depth). Different from other methods, we compute the loss with respect to the ground-truth high-resolution output right after the upscaling layer, in addition to computing the loss after the last convolutional layer. The intermediate loss forces our network to produce a better output, closer to the ground-truth. A widely-used approach to obtain sharp results is to add Gaussian blur using a fixed standard deviation. In order to avoid overfitting to a fixed standard deviation, we apply Gaussian smoothing with various standard deviations, unlike other approaches. We evaluate our method in the context of 2D and 3D super-resolution of CT and MRI scans from two databases, comparing it to relevant related works from the literature and baselines based on various interpolation schemes, using 2x and 4x scaling factors. The empirical results show that our approach attains superior results to all other methods. Moreover, our human annotation study reveals that both doctors and regular annotators chose our method in favor of Lanczos interpolation in 97.55% cases for 2x upscaling factor and in 96.69% cases for 4x upscaling factor.