论文标题

双踢链中的本地相关性

Local correlations in dual-unitary kicked chains

论文作者

Gutkin, Boris, Braun, Petr, Akila, Maram, Waltner, Daniel, Guhr, Thomas

论文摘要

我们表明,对于双重独立的踢链,建立在一对复杂的Hadamard矩阵上,严格的本地,无纹身操作员的相关器相同,因为足够长的链条都消失了。另一方面,在相邻链位对成对的载体沿光锥边缘表现出非平凡的相关性。与Bertini等人一致。 al。 [物理。莱特牧师。 123,210601(2019)],可以通过转移矩阵$ t $的期望值表示。此外,我们确定了一个了不起的双重单身模型家族,可以提供有关$ t $频谱的明确信息。对于这类模型,我们为相应的两点相关器提供了一个封闭的分析公式。反过来,该结果允许评估在踢伊斯特自旋链上举例说明双重独立状态附近的局部相关器。

We show that for dual-unitary kicked chains, built upon a pair of complex Hadamard matrices, correlators of strictly local, traceless operators vanish identically for sufficiently long chains. On the other hand, operators supported at pairs of adjacent chain sites, generically, exhibit nontrivial correlations along the light cone edges. In agreement with Bertini et. al. [Phys. Rev. Lett. 123, 210601 (2019)], they can be expressed through the expectation values of a transfer matrix $T$. Furthermore, we identify a remarkable family of dual-unitary models where an explicit information on the spectrum of $T$ is available. For this class of models we provide a closed analytical formula for the corresponding two-point correlators. This result, in turn, allows an evaluation of local correlators in the vicinity of the dual-unitary regime which is exemplified on the kicked Ising spin chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源